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Introduction

Control of strong head-tail and electron cloud inestabilities

@ Limiting factor in LHC/Injectors to maximize intensities and
luminosity.

@ Electron Cloud Instabilities (ECI) CERN is conducting an effort to
coat critical parts of the accelerator with amorphous carbon. Wide
band feedback is complementary.

@ Transverse Mode Coupled Instabilities (TMCIl) CERN redesigned
the lattice for SPS (Q26 — Q20) to increase the beam current
threshold to TMCI.

@ Wide band feedback can control both instabilities.

@ This technology opens new options Scrubbing at SPS and
processing intrabunch signals for instrumentation and bunch
diagnostic.
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Introduction

Lattices and main parameters for SPS ring

@ - Q26 Optics (actual lattice)
e Bunch length = 3.2ns (4 o7 at 26 GeV/c)
e Tunes: Qx = 26.13, Qy = 26.185, Qx = 0.0059
e Fractional tunes: Y - wg = 0.185, Z - ws = 0.0059

@ - Q20 Optics (new lattice)
e Bunch length = 3 ns (4 o7 at 26 GeV/c)
@ Tunes: Qx =20.13, Qy = 20.185,Qx = 0.0170
e Fractional tunes: Y - wg =0.185, Z - wg = 0.0170
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General Considerations of Q20 optics

General Considerations of Q20 optics
Electron Cloud Instabilities (ECI)

-SPS Q20 Lattice - No feedback, scan electron cloud densities
- Mode 0: wg = 0.185, Mode 1: ws + ws = 0.202 at pe = OM~3,
26 GeV/c.

p, = [1 —30] x 1e11 M (rom red over green to blue)
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General Considerations of Q20 optics

General Considerations of Q20 optics
Electron Cloud Instabilities (ECI)

-SPS Q20 Lattice - No feedback, scan for beam intensity
- Mode 0: wg = 0.185, Mode -2 : wg — 2ws = 0.151 at [, = OMA,
26 GeV/c.
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Controller Design

Control Requirements

@ - Stabilize the intra-bunch dynamics

e Unstable modes for ECI -TMCI
o Robust to parameter changes in the beam dynamics and different
conditions (steady-state) of the machine

@ - Maximum dynamic range to keep stability-performance for a
maximum set of transient conditions

@ - Feasible controller

e Unstable dynamics sets the minimum gain in the controller
o Intrisic delay sets the maximum gain in the controller

@ - Reject noise and perturbations
o Isolate vertical displacement signals from longitudinal/horizontal
signals.
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Controller Design

Controller Design
Control Configuration - Processing Channel
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@ 4 GSa/s digital channel. Flexible, reconfigurable processing
e Analog equalization of pick-up and cable transfer functions.
e 2 ADCs /1 DAC
@ Detail of processing channel
e 16 samples across 5 ns bucket. e e e
e Finite impulse response (FIR) and 8
Infinite impulse response (IIR) %
filters F
o Individual processing per sample

C. H. Rivetta

Ampl.
Kicker
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Controller Design

Dominant Bunch Dynamics

The bunch is characterized by the dominant modes whose eigenvalues
are +i(wg + kws)k:...—6,..0,...+6,.'..- In the fig. those eigenvalues are
mapped in Z domain: oy = e*wsthws)Tr|, _ o o o

1 @ Controller filter

composed of different

1 sections:

@ DC rejection and

. phase adjustment

@ Damping around

i dominant modes
(phase adjustment)

© Low-pass filter

X bunch eig.
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Controller Design

Controller Design
Filters
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Controller Design

Filters
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Figure: Transfer function of IR filters

LARP-CM22 Meeting 2014 May 7,2014 11



Evaluation of system parameters

System Stability - Noise

@ Evaluate + 6 lateral bands around the betatron frequency
(Assume power stage has a ideal bandwidth 850-1000 MHz)

@ Evaluate different filters with increasing number of zeros.

@ Same low-pass order in all cases - Third order Chebysheuv filter

type Il.
@ Critical parameters: LP Bandwidth, position of zeros, overall
phase adjustment.

@ Criteria: Stability margins, Equivalent noise gain,

@ Stability: use root locus (plots the position of the system
eigenvalues for different gains in the controller, G = 0, ..., Gmax)

V.
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Controller Design

Stability Analysis

IR Filter - 1 zero
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Controller Design

Stability Analysis
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Stability Analysis

IIR Filter - 2 zeros
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Figure: Complete Root Locus - IIR
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Stability Analysis
IIR Filter - 2 zeros
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Figure: Detail Root Locus - IIR
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Stability Analysis

IR Filter - 3 zeros
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Figure: Complete Root Locus - IIR
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Controller Design
Stability Analysis
[IR Filter - 3 zeros
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Figure: Detail Root Locus - IIR

LARP-CM22 Meeting 2014 May 7, 2014 18



Controller Design

Results

Noise
o |IR 1 zero: BW= 0.9, Gol = 0.4, Gf = 575
o =770 (for ojp = 1, Go = 770)
@ |IR 2 zeros: BW= 0.8, Gol = 0.4 Gf =639
o = 588 (for oj, = 1, Go = 588)
@ IIR 3 zeros: BW= 0.7, Gol = 0.7 Gf = 1086
o =543 (for ojn = 1, Go = 543)
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Work in Progress

Result Validation - Implementation

@ Validate this preliminary design for the controller with analysis and
results using macroparticle simulation codes.

@ Define a more precise representation for the reduced model of the
bunch

@ Include in the feedback system realistic models of the hardware -
Analyze limitations and partition of gain around the feedback loop.

@ Define controller filter for Q20 optics and implement in FPGA.

LARP-CM22 Meeting 2014 May 7, 2014 20



Stability Analysis

Preliminary Results Head-Tail Simulations - Filter with 1 zero
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Future considerations

Future considerations

Use of multiple pick-ups / kickers in the feedback system

To reduce the latency in the controller filter we start evaluating the use
of multiple pick-ups and kickers distributed around the ring.
Adds flexibility and improves signal to noise.
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Control

PUn K2
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Conclusions

@ We started evaluating a design for the feedback controller for the
SPS Q20 optics.

@ Itimposes a challenge due to the large synchrotron frequency,
spreading out in a wide frequency band the dominating modes of
the bunch.

@ Multiple filters has been analyzed using as criteria system stability
and noise gain of the filter.

@ More work is necessary to validate this design before
implementing it in the feedback firmware.

@ Parallel studies are conducted to understand the benefits in this
design of using multiple kickers / pick-ups distributed around the
ring.
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